Scientists create world’s first biologically powered computer chip

Scientists create world’s first biologically powered computer chip

Having isolated a biological process and used it to power an integrated circuit, researchers are now ...

Having isolated a biological process and used it to power an integrated circuit, researchers are now looking at ways to scale down the system, and look for ways to manage biological decay (Credit: Shutterstock)

The dream of melding biological and man-made machinery is now a little more real with the announcement that Columbia Engineering researchers have successfully harnessed a chemical energy-producing biological process to power a solid state CMOS integrated circuit.

According to study lead professor Ken Shepard, this is the world’s first successful effort to isolate a biological process and use it to power an integrated circuit, much like the ones we use in phones and computers.

The researchers developed the system by using an artificially created lipid bilayer membrane containing naturally occurring ion pumps, which are powered by the biological world’s “energy currency molecule,” ATP (adenosine triphosphate). ATP is the coenzyme that transfers chemical energy between living cells. It is an end product of processes such as photosynthesis and cellular respiration, and it powers the mechanical work of living systems such as cell division and muscle contraction.

The scientists connected the lipid membrane to a conventional solid-state complementary metal-oxide-semiconductor (CMOS) integrated circuit, and the ion pumps powered the circuit.

“Ion pumps basically act very similarly to transistors,” Shepard tells Gizmag. “The one we used is the same kind of pump that is used to maintain the resting potential in neurons. The pump produces an actual potential across an artificial lipid membrane. We packaged that with the IC and we used the energy across that membrane due to those pumped ions to power the integrated circuit.”

Using an isolated and artificially created biological component is a different approach to interfacing whole living systems with chips, which was done in the past with varying success.

“We don’t need the whole cell [now],” Shepard says. “We just grab the component of the cell that’s doing what we want. For this project, we isolated the ATPases because they were the proteins that allowed us to extract energy from ATP.”

Shepard says the team is excited about the prospect of extending the range of possibilities in electronics.

“As technology scaling ends, we have to be a little bit more creative and expansive in the way we define an electronic device and the material systems that we use to create electronic devices,” he says. “How do we expand the palette? That’s essentially what this work is about.”

The key challenges now are to try to scale the system down, and to look for ways to manage biological decay.

Challenges aside, the potential for combining biological and electronic processes certainly fires the imagination.

“100 Intel designers couldn’t design a system that could tell if there’s a skunk in the room or not, and the best synthetic biologists in the world couldn’t build a radio,” quips Shepard. “But if we can just use the piece of the biological process that we want and use its function with solid state electronics, we’ll get that enhanced functional palette of capabilities that don’t exist with chips alone.”

The research was recently published in Nature Communications.

Source: Columbia University

December 25, 2015 / by / in , , , , , , , , ,

Leave a Reply

Show Buttons
Hide Buttons

IMPORTANT MESSAGE: is a website owned and operated by Scooblr, Inc. By accessing this website and any pages thereof, you agree to be bound by the Terms of Use and Privacy Policy, as amended from time to time. Scooblr, Inc. does not verify or assure that information provided by any company offering services is accurate or complete or that the valuation is appropriate. Neither Scooblr nor any of its directors, officers, employees, representatives, affiliates or agents shall have any liability whatsoever arising, for any error or incompleteness of fact or opinion in, or lack of care in the preparation or publication, of the materials posted on this website. Scooblr does not give advice, provide analysis or recommendations regarding any offering, service posted on the website. The information on this website does not constitute an offer of, or the solicitation of an offer to buy or subscribe for, any services to any person in any jurisdiction to whom or in which such offer or solicitation is unlawful.