Power from the Air

Power from the Air

ma16-10airpowerx2760

 

Internet devices powered by Wi-Fi and other telecommunications signals will make small computers and sensors more pervasive.

Availability: 2-3 years

Even the smallest Internet-connected devices typically need a battery or power cord. Not for much longer. Technology that lets gadgets work and communicate using only energy harvested from nearby TV, radio, cell-phone, or Wi-Fi signals is headed toward commercialization. The University of Washington researchers who developed the technique have demonstrated Internet-connected temperature and motion sensors, and even a camera, powered that way.

Transferring power wirelessly is not a new trick. But getting a device without a conventional power source to communicate is harder, because generating radio signals is very power-intensive and the airwaves harvested from radio, TV, and other telecommunication technologies hold little energy.

Shyamnath Gollakota and his colleague Joshua Smith have proved that weak radio signals can indeed provide all an Internet gadget needs, using a principle called backscattering. Instead of generating original signals, one of their devices selectively reflects incoming radio waves to construct a new signal—a bit like an injured hiker sending an SOS message using the sun and a mirror. A gadget using the technique absorbs some energy from the signal it is modifying to power its own circuits.

 

Power from the Air

  • Breakthrough Wireless gadgets that repurpose nearby radio signals, such as Wi-Fi, to power themselves and communicate.
  • Why It Matters Freeing Internet-­connected devices from the constraints of batteries and power cords will open up many new uses.
  • Key Players in Harvesting Radio Waves – University of Washington
    – Texas Instruments
    – University of Massachusetts, Amherst

 

“We can get communication for free,” says Gollakota. RFID chips for the contactless smart cards used in mass transit also rely on backscattering, but they require specialized reader devices and can communicate only within a few inches because the reflected signals are weak and the reader itself presents interference.

One version of the University of Washington technology, dubbed passive Wi-Fi, is being commercialized through a spin-off company, Jeeva Wireless. It lets battery-free gadgets connect with conventional devices such as computers and smartphones by backscattering Wi-Fi signals. In tests, prototype passive Wi-Fi devices have beamed data as far as 100 feet and made connections through walls. Doing that requires altering the software of a Wi-Fi access point to generate an extra signal for passive Wi-Fi devices to use, very slightly increasing its power consumption.

Smith says that passive Wi-Fi consumes just 1/10,000th as much power as existing Wi-Fi chipsets. It uses a thousandth as much power as the Bluetooth LE and ZigBee communications standards used by some small connected devices and has a longer range. A device using passive Wi-Fi to communicate—for example, a security camera—could power its other circuits using energy harvested from the Wi-Fi signals it is backscattering, or by feeding on other signals such as TV and radio broadcasts.

The researchers believe that tiny passive Wi-Fi devices could be extremely cheap to make, perhaps less than a dollar. In tomorrow’s smart home, security cameras, temperature sensors, and smoke alarms should never need to have their batteries changed.

 

[MIT Technology Review]

June 6, 2016 / by / in , , , , , , , , ,

Leave a Reply

Show Buttons
Hide Buttons

IMPORTANT MESSAGE: Scooblrinc.com is a website owned and operated by Scooblr, Inc. By accessing this website and any pages thereof, you agree to be bound by the Terms of Use and Privacy Policy, as amended from time to time. Scooblr, Inc. does not verify or assure that information provided by any company offering services is accurate or complete or that the valuation is appropriate. Neither Scooblr nor any of its directors, officers, employees, representatives, affiliates or agents shall have any liability whatsoever arising, for any error or incompleteness of fact or opinion in, or lack of care in the preparation or publication, of the materials posted on this website. Scooblr does not give advice, provide analysis or recommendations regarding any offering, service posted on the website. The information on this website does not constitute an offer of, or the solicitation of an offer to buy or subscribe for, any services to any person in any jurisdiction to whom or in which such offer or solicitation is unlawful.