Graphene Shows Promise For Brain Implants

Graphene Shows Promise For Brain Implants

Graphene, the super thin carbon material that’s been exciting scientists in the decade+ since single-atom thick graphene crystallites were successfully extracted from the bulk material, continues to give hints of a promising future blending electronics and biology.

In a new study, conducted by researchers at the Cambridge Graphene Centre and the University of Trieste in Italy, and published in the journal ACS Nano, the suggestion is it could be used to make highly effective, flexible brain implants in future — biodevices that avoid the loss of signal problem associated with the scar tissue that can form around modern electrodes made from more rigid substances, such as silicon and tungsten.

Point is, human brains are made of soft tissue so it helps if your electrodes can flex too. Graphene is also considered to have excellent biocompatibility properties (although research into potential toxicity is not conclusive at this stage).

The implication of the Cambridge-Trieste research is that graphene-based electrodes could, in future, be safely be implanted in the brain — offering promise for the restoration of sensory functions for amputee or paralysed patients, for example, or to help individuals with motor disorders such as epilepsy or Parkinson’s disease. So the future potential being glimpsed here is pretty exciting — albeit, theoretical and a long way out (plus, it should be stressed, the successful experiments were also conducted on rat brain cultures).

The researchers note that previously other groups have shown it is possible to use treated graphene to interact with neurons in the brain, however the problem with using treated graphene was the signal to noise ratio was very low. Working with untreated graphene retains the material’s much lauded electrical conductivity — resulting in a significantly better electrode. And one that was seen to interface well with rat neurons.

“For the first time we interfaced graphene to neurons directly,” said Professor Laura Ballerini of the University of Trieste in Italy, in a statement. “We then tested the ability of neurons to generate electrical signals known to represent brain activities, and found that the neurons retained their neuronal signalling properties unaltered. This is the first functional study of neuronal synaptic activity using uncoated graphene based materials.”

The scientists couch the research as a “first step” towards using pristine graphene-based materials as an electrode for a neuro-interface. So again, graphene-based biodevices aren’t going to be coming to CES next year — perhaps in a couple of decades…

They say their next steps will be to investigate how different forms of graphene are able to affect neurons, and whether tuning the material properties might alter the biological response (in terms of synapses and neuronal excitability).

“Hopefully this will pave the way for better deep brain implants to both harness and control the brain, with higher sensitivity and fewer unwanted side effects,” added Ballerini.



February 9, 2016 / by / in , , , , , , , ,

Leave a Reply

Show Buttons
Hide Buttons

IMPORTANT MESSAGE: is a website owned and operated by Scooblr, Inc. By accessing this website and any pages thereof, you agree to be bound by the Terms of Use and Privacy Policy, as amended from time to time. Scooblr, Inc. does not verify or assure that information provided by any company offering services is accurate or complete or that the valuation is appropriate. Neither Scooblr nor any of its directors, officers, employees, representatives, affiliates or agents shall have any liability whatsoever arising, for any error or incompleteness of fact or opinion in, or lack of care in the preparation or publication, of the materials posted on this website. Scooblr does not give advice, provide analysis or recommendations regarding any offering, service posted on the website. The information on this website does not constitute an offer of, or the solicitation of an offer to buy or subscribe for, any services to any person in any jurisdiction to whom or in which such offer or solicitation is unlawful.